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We present an unconventional method of estimating all of the Lyapunov exponents of a dynamical
system from either a known map or a set of experimental data. Rather than averaging exponents along a
single trajectory, we instead represent each exponent as an integral over all of phase space. The contribu-
tion to each exponent, calculated at each point in phase space, is averaged spatially by weighting areas of
high density more heavily than areas of low density, according to the invariant measure of the system.
Explicit formulas for approximating both the contributions to the exponents and the invariant measure
are given, and convergence results stated. The techniques are illustrated in detail for the Hénon system.

PACS number(s): 02.50.Ey, 02.30.—Cj, 02.70.—c, 02.50.Ga

I. LYAPUNOV EXPONENTS
OF DETERMINING DYNAMICAL SYSTEMS

Let f:M—>M be a C? diffeomorphism of a smooth
Riemannian manifold. Lyapunov exponents arise as pos-
sible values of the limit

lim %lnﬂdf"(x wll (1)

for various initial points x on some manifold M and vec-
tors v. The above limit, if it exists, represents the long-
term local stretching of an orbit beginning at x in the
direction v. If x is fixed, and v varied over all of T, M,
only a finite number of values AM(x)<A®(x)
< ... 2A9(x) are possible for a d-dimensional system.
When experimentalists talk about ‘“the Lyapunov ex-
ponents” of a given dynamical system, they assume that
Lebesgue-almost-all initial points in a neighborhood of
the “attractor” produce orbits that exhibit the same non-
trivial ergodic invariant measure u; nontrivial in the
sense that the support of the measure is more complicat-
ed than a union of periodic orbits. Such an assumption is
only known to be true for simple systems such as Axiom
A diffeomorphisms [1]. For continuous maps, the ex-
istence of an ergodic invariant measure is assured [2]. As
we intend to treat more general (nonuniformly hyperbol-
ic) systems than Axiom A, we must assume that there ex-
ists an “important” ergodic invariant measure u. It is the
Lyapunov exponent of u with which we shall concern
ourselves. We know from Oseledec’s multiplicative er-
godic theorem [3], that for u-almost-all starting points x,
Eq. (1) will produce the same d values, known as
Lyapunov exponents. For simplicity, we assume that the
measure 4 has d distinct exponents. Oseledec’s theory
then also guarantees the pointwise existence of d linearly
independent unit vectors w!”, 1 <i <d, satisfying

lim —:;lnllbf”(x | =A% . )

To obtain the ith Lyapunov exponent, we must evaluate
(2).
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A. Calculation of Lyapunov exponents using a time average

The traditional method of computing the largest
Lyapunov exponent is to try to directly evaluate the limit
in (2) using a randomly chosen x and v; see, for example,
[4-6]. This involves rewriting Df™x) as
Df(f" Y x))Df(f" *x))---Df(x) and then follow-
ing the orbit of x around for n steps and multiplying all
of the Jacobian matrices together in sequence (or alterna-
tively, iteratively applying the matrices to a starting vec-
tor). Because the direction associated with the largest ex-
ponent stretches more (on average) than the other direc-
tions, a randomly chosen vector will nearly always be
dragged into line with the correct direction after a num-
ber of iterations. This technique, known as time averag-
ing, is fraught with both practical and fundamental
theoretical problems. The length of orbit and computing
time required for sufficient convergence of the computed
exponent to a certain value may be very large. The mul-
tiplication of this large number of matrices (either direct-
ly, or indirectly by keeping track of a sequence of vectors)
may also be numerically inaccurate.

Even if we have infinite precision computations, there
is no guarantee that the chosen starting point for the long
orbit will produce a “typical” orbit of the system; it may,
for instance, be a very long periodic orbit. Alternatively,
the orbit may be transient for a long time and not have
settled down to “typical” behavior by the end of the com-
puted time series. For example, Gambaudo and Tresser
[7]1 describe a map which behaves “chaotically” for
around 600000 or 1500000 iterations (depending on the
computer used) before falling into a sink of period 11. If
one were to estimate the Lyapunov exponents of such an
orbit using a time average, a stable value would be
reached after 250 000 iterations and maintained up until
the point where the orbit falls into the periodic orbit.
Such an example highlights the dangers of estimating
Lyapunov exponents, which are descriptions of limiting
behavior, using a time average of finite length. The space
average overcomes these difficulties by giving an explicit
approximation of the invariant measure from which we
obtain the Lyapunov exponents. In this way, we do not
select starting points outside the support of the “interest-
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ing” measure. Perhaps most importantly, there is little
theoretical understanding of what is really going on in
the time-averaging procedure. To overcome these poten-
tial difficulties, we instead propose to calculate the ex-
ponents using a space average rather than a time average.

B. Calculation of Lyapunov exponents via spatial averaging

We propose to average local expansion and contraction
spatially, using the invariant measure of the dynamical
system. Such a technique is commonly used in one-
dimensional systems, though the extension to higher di-
mensions is not widely known.

By collecting together the vectors w!” over all of phase
space, we define a set of d vector fields {w/"} which vary
measurably with x for each i=1,...,d. These vectors
w!? are the crucial objects for the spatial averaging tech-

nique. They satisfy the important relation
Df(x)wi=a"x)w,, , (3)

where a'?(x) is a scalar function of x; see [2,8]. The
a'(x) represent the amount of stretching or shrinking
that occurs along the special directions w”. Now,

lim - In||Df " w|
n—-o N
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. 1 i - i i
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= lim - In T |a"(Fx))| 4)
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n <,
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= [ || Df (x)w{||dpu(x) (5

using transformation (3), and the Birkhoff theorem for
the final equality. The spatial average takes a contribu-
tion to the ith exponent from each point x in phase space
(the amount of stretching in the appropriate direction
w!?) and weights this contribution according to the in-
variant measure pu. The invariant measure we want to
use is the natural measure of the system which weights
areas of high density more heavily than areas of low den-
sity.

In simple cases like fixed points and periodic orbits, it
is easy to compute the w,‘c”, using transformation (3) and
Eq. (4).

Example I.1. Let x be a fixed point, and arrange the ei-
genvalues of Df (x) in ascending order according to their
moduli.

(i) If the ith eigenvalue is real and of unit multiplicity,
then the logarithm of the modulus of this eigenvalue is
the ith Lyapunov exponent and w.” is the corresponding
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(normalized) eigenvector.

(ii) If the eigenvalues i up to i +j —1 are real and equal
(multiplicity j), then rather than a vector, we have a j-
dimensional subspace W\ associated with the ith ex-
ponent, which is equal to the logarithm of the eigenval-
ues. The subspace W." is spanned by the j eigenvectors
corresponding to eigenvalues i up to i +j—1.

(iii) If the eigenvalues i up to i +j —1 are complex and
of equal modulus, then we again have a j-dimensional
subspace W." associated with the ith exponent. The ith
exponent is equal to the logarithm of the modulus of the
eigenvalues.

Example 1.2. If x is a periodic point of period p, then x
is a fixed point of f?. For simplicity, assume that Df?(x)
has all its eigenvalues real and distinct. The w!” are then
normalized eigenvectors of DfP(x). By writing Df?(x)
in the form Df(f? x))Df(f? %x)) -+ Df(x) and
cyclically permuting the order of the matrices, the wj‘,",-’(x)
may be obtained for j=1,..,p —1. From (4), it is readily
seen that the corresponding exponents are given by the
logarithms of the product of the a‘?(f/(x)), that is,
X(i)=1n[]'[§;(§]a(”(fj(x ))| ]l/p_

As a more complicated example, the vector fields
{w!?} and {w!?’} have been approximated and plotted
for the Hénon map (strictly Hénon attractor) in Fig. 1.
The Hénon system has two distinct exponents, one posi-
tive and the other negative. The positive exponent gen-
erates the vector field {w!?’} and {w/"} is generated by
the negative exponent. Note that the w'® appear to be
tangent to the attractor, which contains the unstable
manifold of the fixed point.

To compute the vector corresponding to the largest ex-
ponent for the point x, we iterate x backwards a few
times (three or four) and choose a random vector. We
then apply the Jacobian matrices in sequence to “push
forward” the random vector to the point x. Clearly, this
method is not guaranteed to work for nonuniformly hy-
perbolic systems such as Hénon as you may hit a con-

x

FIG. 1. Approximation of the vector fields for the Hénon
map; {w!"} (dotted) and {w >} (solid).
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tracting region where there should be expansion, but
“most” of the time the computed vector looks roughly
correct. To compute the smallest exponent, reverse the
procedure, iterating forward and then “pulling back” a
random vector with Jacobian matrices. A brief discus-
sion of the “folding up” of vectors is given in Wolf et al.
[5].

The existence of the vector fields {w”] addresses the
problem identified in the widely referenced paper [5].
“The apparent multivaluedness of the most rapidly grow-
ing direction in some regions of the attractor shows that
this direction is not simply a function of position on the
attractor.” We also remark that the authors of [S] ap-
pear to suggest that what we are proposing to do is not
possible. “Attempts to estimate exponents by averaging
local contraction and expansion rates of phase space are
likely to fail at the point where these contributions to the
exponents are combined. .. We conclude that exponent
calculation by averaging local divergence estimates is a
dangerous procedure.”

C. Invariant measures of dynamical systems

The main practical difficulty with the spatial averaging
technique is that is requires an estimate of the “physical”
or ‘“natural” invariant measure of the dynamical system.
Such notions have precise mathematical definitions only
in very simple and well understood systems, such as ex-
panding or unimodal maps in one dimension and Axiom
A diffeomorphisms in higher dimensions. For Axiom A
systems, it is known that there is a unique ‘“‘physical”
measure, known as the Sinai-Bowen-Ruelle (SBR) mea-
sure, which is exhibited by orbits of Lebesgue-almost-all
starting points in a neighborhood of the attractor. In the
nonuniformly hyperbolic case, very little is known about
the existence of “physical”” measures. For example, it has
only recently been shown [9] that the Hénon map (with
parameters b >0 fixed and sufficiently small, and a €A,
a set of positive measure) admits an SBR measure. How-
ever, nothing can yet be said about “physical”> measures
for the Hénon map with the wusual parameters,
a=1.4,b=0.3. So the situation is very difficult and to
say anything precisely, strong assumptions have to be
laid down.

For general dynamical systems, the natural measure is
usually taken by experimentalists to mean the limiting
distribution of long orbits that show up on a computer
for nearly all initial points. This description is far from
satisfactory as it depends on machine properties that vary
from computer to computer. Two problems with com-
puter modeling are round-off errors and the fact that the
computer operates on a finite, discrete state space. The
finite state space means that all orbits are eventually
periodic; a property that may be in stark contrast to the
real system. The round-off error (combined with sensitive
dependence on initial conditions) means that computer
orbits may be completely different from true orbits of the
system. The shadowing lemma is often cited as
justification of computer modeling, but even in cases
where it may be applied, there is no guarantee that the
shadowing orbit exhibits the “important” measure.

Minimal progress has been made on relating convergence
of computer orbits (under increasing computer precision)
to “important” invariant measures of the true system.
Most of the work has centered on one-dimensional sys-
tems, where absolutely continuous invariant measures are
considered to be the “important” measures. In the case
of maps of the unit interval which admit a unique abso-
lutely continuous invariant measure, Gora and Boyarsky
[10] have shown that histograms produced by long com-
puter orbits approach the histogram given by the invari-
ant measure as the computer precision increases. This re-
sult depends on the existence of long, nonperiodic orbits
whose length grows at a rate proportional to the cardinal-
ity of the set of computer distinguishable numbers, an as-
sumption which appears to be false even in simple cases
[11]. Diamond, Kloeden, and Pokrovskii [12] have given
a characterization of invariant measures exhibited by the
“circle-doubling” map under various symmetric random
perturbations of binary arithmetic, showing that the
binary arithmetic leaves the Lebesgue measure invariant
in the infinite precision limit only for special perturbation
values.

We do not concern ourselves with these problems in
this paper. Our method of approximating the invariant
measure, discussed in the following section, is to compute
invariant measures of systems which are subjected to
small random perturbations. The magnitude of our per-
turbations will be much greater than the machine epsilon
of our computer so that we ignore perturbation effects
due to roundoff. As the perturbations go to zero, we ex-
tract a limiting measure which is invariant for the unper-
turbed system. We argue that invariant measures that
arise as limits of invariant measures of perturbed systems
have physical significance as they are in some sense
robust with respect to small perturbations.

II. PRACTICAL ESTIMATION
OF LYAPUNOYV EXPONENTS
OF DETERMINISTIC DYNAMICAL SYSTEMS

At the outset, we wish to make it clear that our pro-
posed space-averaging technique is far from superseding
the time average as the experimentalist’s preferred
method of computing Lyapunov exponents. Rather, it
presents an alternative to the traditional method; one
which provides greater theoretical and, it is hoped, intui-
tive understanding of what Lyapunov exponents are and
how they are calculated.

In practice, there are two positions from which one
wants to estimate Lyapunov exponents. Either the map
is known, or it is unknown and only a set of data generat-
ed by the map is available. The difficulty with directly
applying the spatial averaging method to the determinis-
tic system is that one does not have an easily accessible
estimate of the invariant measure. By representing the
reconstructed deterministic system as a random dynami-
cal system governed by a Markov chain, we obtain an ap-
proximation of the invariant measure, namely, the invari-
ant density of the chain. For practical purposes, we need
a finite state Markov chain for calculations to be done by
a computer. To define the Lyapunov exponents of a Mar-
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kov chain, we require a matrix to be associated with each
state, which means a finite number of Jacobian matrices.
In other words, our map, reconstructed or not, should be
piecewise linear. The invariant density we obtain will as-
sign a weight to each portion of linearity. We produce a
sequence of increasingly accurate piecewise linear
approximations-reconstructions of our map, which in-
duces a sequence of Markov chains. In the case of an un-
known map, the sequence of reconstructions may be
enumerated, for example, as more data points become
available. We require that the sequence of Jacobian ma-
trices of our piecewise linear maps converge uniformly to
the Jacobian matrices of the true map. We also want the
Markov chains to be small random perturbations [13] of
the true map. The hope is that the computed exponents
of the Markov chains approach the Lyapunov exponents
of the true deterministic map. Young [14] has pointed
out that in general this is not true, i.e., there exist maps
which, when varied continuously in the C! topology,
have Lyapunov exponents that vary discontinuously. In
other words, by approximating a map, we do not neces-
sarily approximate its Lyapunov exponents. If we impose
a strong condition on the map f, amounting to each vec-
tor field in the Oseledec splitting {w'":i=1,...,d} vary-
ing continuously with x, then our hope is substantiated in
the sense that diffeomorphisms near f have similar
Lyapunov exponents.

In the case of two-dimensional systems with exponents
of opposite sign, uniform hyperbolicity is enough, as this
gives us a continuous splitting. So, for two-dimensional,
uniformly hyperbolic systems, convergence of the ex-
ponents is assured but in higher dimensions further re-
strictions apply.

This lack of continuity is not a failure of the space-
averaging method; it is a general fact of Lyapunov ex-
ponents. Lyapunov exponents are commonly estimated
in the physics literature using time averages of approxi-
mate maps under the (false) implicit assumption that ap-
proximate maps possess similar exponents. However,
computer experiments seem to somehow hide such patho-
logical behavior, and for numerical estimation of
Lyapunov exponents, the authors will turn one blind eye
and not discourage spatially averaging exponents of ap-
proximate maps.

In our example we estimate exponents from a finite set
of data. We use the method of triangulation (Mees [15])
to provide us with an approximation of the true system.
Initially, the convex cover of the data points, denoted by
@, is triangulated using d simplices; see Fig. 2.

On each simplex, the map is approximated linearly, so
we obtain a continuous piecewise linear approximation to
the system. From the reconstructed map, the derivative
may also be computed, and will be constant on each sim-
plex.

Approximating the invariant measure

Having split the space up into m disjoint simplices, we
look for an approximation of the invariant measure
which gives a weight to the centroid of each simplex.
The image of the vertices of each simplex is known, and
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FIG. 2. Triangulation of an 80 point orbit.

since the map is affine on each simplex, the image of any
simplex will lie in the convex cover of the image of its
defining vertices. The transition probability from simplex
(i) to simplex (j) represents the probability that the im-
age of a point in simplex (i) lies in simplex (j), and is
denoted by P;;. Appealing to the linearity of the map on
simplices, a suitable approximation of transition proba-
bilities is obtained by setting

I((image of S;)NS;)
U7 I(image of S;)

’

where S; denotes simplex (i) and / is the natural Rieman-
nian volume. From this definition, it is readily seen that

m
S P;=1 fori=1,...,m
j=1

and
P,-jZO fori=1,...,m,

so that P is a stochastic matrix. The matrix P represents
the evolution of our system from a probabilistic point of
view. Instead of a starting point for an orbit, we now
have an initial distribution on our m states,
1r(°)=(1r(1°),rr(2°’, cees 'n'(,f,”), and subsequent distributions

are given by
,n.(i)=,n.(i—1)P=ﬂ.(0)Pi .

The invariant distribution we seek will satisfy 7=P, and
so is just a left eigenvector of P with unit eigenvalue. As-
sociated work has been done by Murao and co-workers in
Ref. [16] where invariant measures are estimated on tori
using a related technique. Figure 3 shows the approxi-
mation to the invariant measure for the map reconstruct-
ed from the 80 data point orbit.

The Markov process governed by P;; can be thought of
as a deterministic mapping on the finite space
{x{,...,x,} of centroids of simplices with random
noise added after each computation. After computing
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FIG. 3. Approximation of the invariant measure of the
Hénon map using an 80 point orbit. The measure is a finite
combination of §-function measures shown as spikes on the
two-dimensional plot. The base of the spike represents the posi-
tion of the 8-function measure, and the height represents the
relative weight given to the centroid.

the true image of x;, the result is randomly perturbed so
that the resulting value is one of the points {x;} with
P;;70. Because of the way P;; is defined, as the distance
between points decreases, the “radius” of perturbation
also lessens. It may be shown [17] that the Markov chain
defined with transition matrix P;; as above is a small ran-
dom perturbation of the true deterministic system. In the
next section we see how to compute the Lyapunov ex-
ponents of the induced Markov chain.

III. LYAPUNOV EXPONENTS
OF RANDOM DYNAMICAL SYSTEMS

Lyapunov exponents may be defined for random sys-
tems analogously to the deterministic case. For a deter-
ministic dynamical system (M, f), each point x EM has a
matrix associated with it, namely, Df(x), the Jacobian
matrix of f evaluated at the point x. For a random
dynamical system, we again have matrices associated
with each point in our domain, and as the evolution of
the system moves randomly about from point to point,
the matrices corresponding to the points in the orbit are
multiplied together in sequence. Thus we may talk about
the Lyapunov exponents of this random product of ma-
trices. For our purposes, we are only interested in
Lyapunov exponents of Markov chains, as this is the sim-
plest type of random system that can be used to model a
deterministic system. We will be looking at random
products of matrices with Markovian dependence.

A. Calculation of Lyapunov exponents
of a Markov chain via spatial averaging

Random dynamical systems are a generalization of
deterministic dynamical systems in the following sense.
Let the state space be some smooth manifold M, and let
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the set ) contain all the possible histories of the random
system as it moves from state to state. In the determinis-
tic case, once an initial point x € M is specified, the only
possible history is

o f Ty e U)X, (), ey filx),. 1))

This is in contrast to the random system, which for a
given starting point may have many different histories.
In the case of the deterministic system, we were able to
spatially average the exponents over the state (points in
M) by measuring the stretching caused by the Jacobian
matrix of that state (Df evaluated at the point in M)
along a single direction specified by the state. For ran-
dom systems, each state has many histories which pass
through it, and so we must average the stretching in-
duced by a state’s matrix over a ‘“smear” of directions, to
compensate for the increased complexity. To represent
these “smears” we consider (d —1)-dimensional real pro-
jective space, denoted RP¢ ~!. Elements of this space are
equivalence classes of vectors in R¢ where two vectors
are considered equivalent if they are real scalar multiples
of one another. RP¢~! can be thought of as the “top”
half of S~! embedded in R? with opposing points on
the “diameter” being identified as equal. In fact, we al-
ways adopt this point of view, with the statement
v ERPY ™! meaning v is a unit vector in R%. When we
speak of the action of a d Xd matrix on an element of
RP?~! we mean matrix multiplication of the unit vector
representing the point in $¢~!. In order to take in con-
tributions to the stretching from the matrix for state x,
we associate with the state a probability measure u, on
B(RP?™!), the Borel subsets of RP? 1,

1. The primary method of determining
the largest Lyapunov exponent

As in the case of the deterministic system, we obtain a
contribution to the Lyapunov exponents from each state
x and weight this contribution according to the invariant
measure. In what we have called the primary method, we
average the stretching induced by the original Jacobian
matrices to calculate the largest exponent. The next sec-
tion describes the use of the inverse Jacobian matrices to
calculate the largest exponent. This is known as the
secondary method. The roles of the original and inverse
Jacobian matrices are exchanged for the primary and
secondary methods of calculating the smallest Lyapunov
exponent.

Define random variables
A,(0)=Df(x,) where

A,:Q>GL(d,R) by

O=(c o ()X iy s XXX g5 e e -3 Xjy... ,WEQ, X, EM .

Let
Sn(a))=An((0)An_1(a)) M Ao(CO)

=Df(x,)Df(x,_{) - Df(xy) .

For some v' €ERP? ™! (see [18]), the largest Lyapunov ex-
ponent A is given by
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A= lim %E(ln”S,,(co)v’]l)

n-—

. 1 ’
=n11131° ;fnlnHS,,(a))v [|dP (o) ,

where P, is the measure on ) invariant under the shift
map. We may express this integral as an integral over the
product of the spaces M and RP?~! using a suitable
product measure u [17,18], so that

A=J . lDS G |dutxp)
=foRPdvlln”Df(x)v“d;zx(v)d'rr(x) , (6)

by disintegration of the measure u with respect to ; see
[19], p. 4. Here, 7 is the invariant measure of the Mar-
kov system satisfying fMP(x,I")doT(x )=m(T) for all
xEM,T€B(M). The family of measures {u,} satisfy
the invariance conditions

py(A)=fM,ux([Df(x)]“lA)P*(y,dx), @)

for all yEM and 4 EB(RP?!), where P* is the transi-
tion function representing the reverse Markov process.
Thus the largest exponent will be given by (6) using a
family of measures {u, ] on RP? ! such that (7) holds.

Note that (6) is a generalization of the spatial average
formula for deterministic systems (5). In (6) we first aver-
age the stretching induced by state x’s matrix over a
smear of directions given by the probability measure u,,
before weighting this contribution according to the in-
variant measure 7.

Since we have a finite state Markov chain, the integral
over M may be replaced by a finite sum. We also wish to
reduce the second integral over RP? ~! to a finite sum us-
ing a suitable approximation. Denote our finite number
of states by x,,...,x,,. Associated with each of these
states is a matrix Df(x;), k =1,...,m. For want of a
better method, we approximate measures on RP?™! us-
ing histograms. To avoid confusion, we denote the ap-
proximation to u, by v,. For simplicity, we only de-
scribe the case where d =2, so that RP! is just one side of
S, with the ends being identified as the same point. Split
the semicircle up into N equal segments s;, j=1,...,N,
and consider the action of a fixed matrix g EGL(2,R) on
RP'. Let v be the measure on this discretized space, with
the density on the jth segment s; being uniform. Figure 4
shows a density function of an absolutely continuous
measure on RP! overlaid with a possible histogram ap-
proximation on 100 segments.

Now

( = I((g-s;)Ns;)
MES)= Ty )

i

= (fraction of s; overlapped by g-s;¥(s;) , (8)

1

by uniformity of the density on s;. The matrix #;; (equal
to the fraction of s; overlapped by g-s;) is stochastic and
represents the action of the matrix g on projective space.
We may fully describe the approximate measure v by its

measure of each segment s;. Set v(s;)=v;, where the v,
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FIG. 4. Approximation of a measure on RP' using 100 bins.

are real numbers and 3 ;v;=1. Defining v'=vog, the
density of v' is given by v; =3 ;v;1,;.

We consider the direct method of finding the largest
exponent, and approximate the family of measures satis-
fying (7). Denote by t'® the stochastic matrix approxi-
mating the action of Df(x, )~! on projective space. For
clarity, we abbreviate the states x,...,Xx, as the in-
tegers 1, ..., m, and denote the transition matrix for the
reversed Markov system by P. Inour approximate setup,
(7) becomes

vils):=v, ;=3 vi(Df (i) 's))P;;
i=1
m N

=3 3 tivi(s, )ﬁji

i=lk=1

m N .
=3P 3 vistid &)
i=1 " k=1

forall j=1,...,mand [=1,...,N. Note that these are
all strict equalities. For an arbitrary measurable set
ACRP? ™!, we proceed as follows.

N
'VJ( A ):IZ;I V](A ﬂs,)
N I(A ﬁs,)

=1 I(S])
N l(AﬂsI) LN —1
=3 ———— 3 Bv(Df(i)s))
2T s &
N I(Aﬂsl)

Py ——
7 1§1 Is;)

'V,‘(Df(i)flsl)

YE
>

1

~ 3 Pvi(Df() ' 4).

i=1

Our approximation is exact for sets that are unions of full
individual bins s;, but is inexact for sets covering parts of
bins. The set of m XN linear equations (9) may be given
a matrix representation as
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(Vi1 e s VN Vo, 15 o= s Vo Ns c =« sV —15+ + s Vi N)
ﬁu’ }’sutm "mlt(l)
ﬁut( Ppt® oo P @
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where each entry displayed in the matrix is an N XN
block. The required vector of length mN is an eigenvec-
tor of unit eigenvalue. All components of this eigenvec-
tor must be non-negative, as each component represents
the measure of a slice of projective space. Another im-
portant restriction that must be placed on this vector is
that 3,v;,=1 for all j=1,...,m. We require this be-

cause v; is a probability measure for each j and hence

EIV j(s ] ) =1.

The following proposition [17] shows that the
mN X mN matrix M has a left eigenvector of eigenvalue
one, satisfying the above requirements.

Proposition II1.1. The matrix M has a non-negative
left eigenvector x of eigenvalue 1 satisfying

D XG-ON+HI =
I

1 for each j=1,...,m .

However, as M is an mN XmN matrix, memory con-
straints could become a problem for computer routines
that calculate eigenvalues. It would be nice if the eigen-
value one were the largest eigenvalue in modulus as we
could then use the power method to approximate the
eigvenvector. This would only require the storage of M
itself, which is typically sparse, and the vector of length
mN. Fortunately, it may be shown [17] that the moduli
of all eigenvalues of M are bounded by unity. By choos-
ing a starting vector with all positive entries, say all ones,
we can be certain that the power method will provide us
with an eigenvector that satisfies (9). This is because 1 is
the dominant positive eigenvalue, and other eigenvalues
of modulus one cannot have non-negative eigenvectors.
Now that we know how to find a solution to (9), we
would like to see [17] that it does in fact represent a good
approximation of a measure satisfying (7).

Proposition II1.2. Let v{¥) denote the approximate
measuré on RP! for state j obtained using N equal “bins”
in projective space. If the solutions of (9) approach a
continuous density as the number of bins increases, then
weak limits of the sequence { M} satisfy (7).

2 2 2 2 2
(V%,z,. e VNV 1 - - - sV Ns -« sV 1o+ - - ’Vm,N)

— (a2 2 2
_(Vl,l’ “oe ’VI,N’VZ,I’ e

2
’V2,N" .

2. The secondary method of determining
the largest Lyapunov exponent

So far, we have been using the matrices Df(x) to mea-
sure the local stretching. We can repeat [17] the whole
above procedure, this time using the inverse matrices
[Df(x)]”! to find the largest exponent. The appropriate
condition for the family of measured {u?} is

,@(A):fxug([Df(y)]“A)P*(y,dx) (10)

for all y € M. We then have that

S pis

We now have two different families of measures that will
provide us with the largest Lyapunov exponent of our
Markov system.

All of the theory in the preceding section applies to the
approximations for the remaining three families of mea-
sures, {v?},{+v’},{v*}. To approximate the family of
measures {v°}, we apply the same approximation to Eq.

In||[Df(x)] | du(v)dm(x).  (11)

« (10).
Vs)=v2,= 3, vADF() 5B,

i=1
m N 3

=2 2 i viis; )ﬁji
i=l1k=1
m N

= 2 Ji 2 z,ktk{

for all j=1,...,m and /=1,...,N. This set of linear

equations has matrix representation

B () pH L2 )
Pyt Pyt P,
i i Pt Ppt® oo P pim
sVl sV ) . . :
m % 2 5
ﬁlmt Pth( ) Pmmt('")
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3. The primary method of determining
the smallest Lyapunov exponent

By running our system backwards we may obtain the
smallest Lyapunov exponent, as the smallest exponent of
the forward system is equal to the negative of the largest
exponent of the reversed system. Recall that this is also
the case for deterministic systems. The corresponding in-
variance condition for the family {u3} is

p ()= [ p(Df(y) AP (x,dp) (12)
for all x EM. We then have
R— -1 3
A fM fRPHlnn[Df(x)] vl|dpiw)dn(x).  (13)

For the remaining two families {v*} and {+*}, we need
to approximate the action of Df(x) rather than
Df(x)” 1 and we denote the approximation of the action
of Df (k) by t'**". To approximate the family of measures
{v], we use Eq. (12).

vils))=v;} —-§ vIDf(j)s;)P;

i=1

2 2 1 v (s Py

j=1k=1
“ S 3 Y
=23 Py 3 vixtid
j=1 k=1

Il

for all i=1,,...,m and /=1,...,N. The matrix we
seek a left unit eigvenvector of is
ay oL 1y
Pyt Pyt P,V
@y 2y 2
Pyt Pyt? Pt
(m)' (m) ... (m)
Pt P, t'" P, t'"

4. The secondary method of determining
the smallest Lyapunov exponent

We may again apply our technique to the reversed sys-
tem. The invariance formula for the family {u?} reads

pi(A)= [ p,(Df(x)4)P(x,dy) (14)

for all x € M, and

A== e

As in the case of the largest exponent, we have two
different families of measures that provide us with the
smallest Lyapunov exponent of our Markov system.

The family of measures {v*} approximate Eq. (14).

In|[Df (x)w||dpd(v)dm(x) . (15)

vils=v},= 3 vI(Df(i)s))P;

_;—1
=2 2‘ "Vi(si )Py
~$r, 3 vt
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for all i=1,...,m, and I=1,...,N. The matrix we
seek a left unit eigenvector of is
(1y r (my
Pyt Pyt Pt
(1 2y (my
Pyt Pyt Pyt
ay @ ... (my
let P2mt Pmmt "

B. How to obtain all the Lyapunov exponents

To obtain all of the exponents, the above theory may
be repeated using the pth exterior powers APR? of R?.
The matrices Df(x) are replaced by the induced linear
maps Df "P: APR*— APR? The top Lyapunov exponent
of this new system is equal to
)\'(d)+)\'(d—l)+ . +A(d—p+1), where }L(d)’ . ,)»(d_p+])
are the p largest exponents of the original system. By
varying p we may obtain the sum of the p largest ex-
ponents for p =1, ...,d, and hence all of the separate ex-
ponents. From a computational point of view it may be
difficult to resolve the negative exponents. This may be
overcome by measuring all of the positive exponents,
then reversing the system and measuring all of the (now)
positive exponents, which were the originally negative
ones.

IV. THE RELATIONSHIP
BETWEEN THE LYAPUNOV EXPONENTS
OF THE RANDOM AND DETERMINISTIC SYSTEMS

As the diameters of the triangles in our triangulated
map go to zero by virtue of there being more data points
made available, three important properties of the se-
quence of Markov chains converge to properties pos-
sessed by the true deterministic map. First, the Jacobian
matrices of the piecewise linear approximation converge
uniformly to the Jacobian matrices of the true map.
Secondly, the evolution of the Markov chains becomes in-
creasingly similar to that of the true map. Finally, the in-
variant measures of the sequence of Markov chains ap-
proach an invariant measure of the true map. Under the
assumption that the true map satisfies the conditions out-
lined in Sec. II, and that the limiting invariant measure is
an ergodic “physical” measure of the system, it may be
shown (according to [14] and results of [17]) that the ex-
ponents of the sequence of Markov chains approach the
Lyapunov exponents of the true map. Such a result is
also true of any sequence of piecewise linear approxima-
tions which are small random perturbations of the true
system and whose Jacobian matrices uniformly converge
to the Jacobian matrices of the true map.

There is a similar convergence result for the case where
one has a finite set of data or a fixed piecewise linear ap-
proximation. For the purpose of description, we consider
a fixed triangulation in two dimensions obtained from a
finite set of points. We may decrease the random pertur-
bation of the system by breaking up the triangles into
four identical triangles, each similar to the original.
These new triangles will have a diameter half that of the
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original. An upper bound for the perturbation of the tri-
angulated map is half the diameter of the largest triangle
plus half the diameter of the largest image triangle. Tri-
angles whose image is large or which are themselves large
should be targeted for the splitting up procedure. As the
maximum diameter of the triangles goes to zero, the ex-
ponents of the Markov system approach the Lyapunov
exponents of the triangulated map, under the above as-
sumption on the map and the limiting measure. We can-
not expect to find the Lyapunov exponents of the true
map as no new information about the Jacobian matrices
is obtained through our splitting up technique; for this
we require more data points. Similar splitting procedures
may be performed in higher dimensions. The same prin-
ciple may also be applied to general piecewise linear ap-
proximations, not arising from triangulations.

V. EXAMPLES AND RESULTS

We use the much studied Hénon map to illustrate the
performance of the techniques described in this paper.
The spatial averaging technique was applied to recon-
structions of the Hénon map obtained from time series of
varying lengths. Recall that the accuracy of both the
reconstruction and the estimates of the exponents de-
pends on the diameters of the triangles rather than the
number of data points. The results are shown in Table 1.

J
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Accepted values are A’ =~0.418,A'V = —1.62.

The estimate of A'!’ has been calculated indirectly, by
subtracting the estimate of A‘® from the estimate of
A2 4D " As the number of data points increases, the es-
timates can be seen to improve for both exponents. We
conjecture that the estimates of the larger exponent are
much better than the estimates of the smaller exponent
because all data points lie near the unstable manifold of
the fixed point. Thus we are obtaining information about
the stretching in preference to information about con-
traction. To expect better estimates of the smaller ex-
ponent we would require some transient data to contain
the contraction information. To compute the time aver-
age of the exponents, we assumed the Hénon map to be
known and multiplied together the Jacobian matrices of
the finite orbits of length 24, 44, 80, and 201. This prod-
uct was then applied to unit vectors in uniformly distri-
buted directions and the results averaged over the start-
ing vectors. As the determinant of the Jacobian matrices
of the Hénon map is constant (In3), A"’ may be obtained
by subtracting A'® from In3. These values are included as
a guide to the relative accuracy of various techniques. Of
course, once we have our reconstructed map, we could
perform the standard time average on arbitrarily long or-
bits. However, this defeats our purpose, as one is once
again dogged by the problems alluded to in Sec. T A.

The maximum perturbation is given by

(maximum perturbation)=max{radius of triangle; +-radius of image of triangle;:triangle; Nimage of triangle TP}

This value is an upper bound for any perturbation of the
triangulated map. The mean perturbation is a weighted
average of the perturbations,

m m
(mean perturbation)= 3, m; ¥, P;d;; ,
i=1  j=1

where d;; is the distance between the centroids of f(S;)
and S;.

Because of the shape of the Hénon attractor and the
action of the map, these perturbations are quite large for
the triangulations obtained from time series. For exam-
ple, triangles that are mapped to the “top” and “bottom”
edges of the attractor are often stretched into long, thin
triangles with large diameters. The large gap on the left
hand side of the attractor also creates large triangles, al-
though the triangles spanning this gap are not as large as

r

they look because of the difference in scaling in the x and
y directions. We need to split up these triangles to reduce
the perturbation. For our examples of the splitting pro-
cedure, we chose a suitable set of data points for which
the original perturbation was relatively small, rather than
a data set arising from a time series; see Fig. 5.

This choice is merely to reduce computing time and
data storage. The splitting principle works equally well
on any set of data; it just takes longer in some cases. The
Hénon map was reconstructed from a set of 87 data
points, and the splitting procedure applied twice. The re-
sults of our algorithms are shown in Table II.

The sum of the exponents is exactly In0. 3=~ —1.2040.

For this example, the estimates of both exponents were
directly calculated, so that the sum of the two estimates
could be compared with the estimate of the sum of the
exponents. Comparing the results of Tables I and 11, we

TABLE I. Estimates of Lyapunov exponents for the Hénon map using data from time series.

Number of Number of Maximum Mean Estimate Estimate Estimate of “Time average”
data points states perturbation perturbation of A® of Al AP 4D estimate of A'V
24 29 0.6585 0.1265 0.09 —0.86 —0.7702 0.5221
44 60 0.6630 0.1657 0.27 —1.01 —0.7325 0.4412
80 120 0.4728 0.0853 0.39 —1.25 —0.8630 0.4013
80 123 - 0.5829 0.0845 0.42 —1.35 —0.9250 0.4080
201 336 0.4411 0.0521 0.42 —1.37 —0.9496 0.3981
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FIG. 5. Triangulation of 87 data points with triangles not in-
tersecting the image triangulation removed.

see that the estimated sum of the exponents is much
better for the less perturbed map and is improving as the
perturbations decrease. This effect is not due entirely to
the perturbations; the Jacobian matrices obtained from
the reconstruction also play a part and depend on the po-
sition of the data points. Note that it may not be neces-
sary to split up the entire convex cover of the data points.
After computing the transition matrix, it may be easily
seen that there may be some triangles which have empty
intersection with the image of the triangulation. These
triangles may be immediately neglected and need not be
split up. After each splitting, this process may be repeat-
ed to rid the triangulation of unnecessary triangles. In
our example, the original triangulation contained 139 tri-
angles. Computation of the transition matrix revealed
that 86 triangles intersected the image triangulation, and
that all of these were nontransient. The 86 triangles were
then split up into 482 triangles to reach a prescribed level
of perturbation. Of these, 339 intersected the image, and
only 314 were nontransient. The 339 triangles were split
again to produce a lower, predetermined level of pertur-
bation.

We remark at this point that it is very simple indeed to
obtain the sum of all of the exponents for our Markov
system. For a d-dimensional Markov system with m
states,
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FIG. 6. Singular approximation of the invariant measure us-
ing 708 states. The measure is a convex combination of 708 §-
function measures, which are shown as spikes in this two-
dimensional plot. The base of the spike represents the position
of the support of the measure and the height represents the rela-
tive weight given to the centroid.

m
ADt oo 4 AD=F 7 det[Df(i)],

i=1

(16)

where Df (i) is the matrix associated with state (i). This
easily computable quantity may be used to check the
values of the individual exponents, which are much more
difficult to obtain. In all the cases that we have studied,
the sum of the individual exponents has been very close
to the value given by (16). From Table II, it seems that
the estimated sum of the exponents is converging to a
value near that of the true Hénon map. This suggests
that the average area contraction has been accurately de-
scribed by the reconstructed map. The individual ex-
ponents, however, appear to be converging to slightly in-
correct values for the true Hénon map, indicating
differences between the reconstructed piecewise linear
map and the true map, in terms of average local expan-
sion and contraction.

Two possible representations of the approximation of
the invariant measures of the fixed triangulated map are
shown in Figs. 6 and 7. Compare Fig. 6 with Fig. 3;
clearly, decreasing the perturbations provides a much
more accurate approximation.

The absolutely continuous approximation has been
constructed from the singular approximation by spread-

TABLE II. Data from the sequence of splittings of a fixed triangulated map.

Number of Number of Maximum Mean Estimate Estimate Estimate of

data points nontransient states perturbation perturbation of A@ of AV AD 4D
87 86 0.4169 0.0866 0.3652 —1.6660 —1.3001
87 314 0.1647 0.0349 0.3531 —1.5845 —1.2302
87 708 0.0990 0.0191 0.3705 —1.5845 —1.2138
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FIG. 7. Absolutely continuous approximation of the invari-
ant measure using 708 states. Darker shades of gray represent
regions of higher density.

ing the weight concentrated at the centroid of the trian-
gle uniformly over the whole triangle. Here, darker areas
represent higher density. In the context of a finite state
Markov chain, the absolutely continuous measure is
meaningless, as it has support on an infinite set of points.
We show it here merely as an alternative representation
of the approximation to the invariant measure, though
the two measures are equivalent in the following sense.
As previously mentioned, a convergent sequence of the
singular measures tends to an invariant measure of the
unperturbed system as the radii of the triangles go to
zero. It may be easily shown that the sequence of abso-
lutely continuous measures constructed from the se-
quence of singular measure converges to the same invari-

ant measure. For all of the calculations, however, it is
the singular measure that must be used.

VI. DISCUSSION

To our knowledge, Kim and Hsu [20] made the first at-
tempt at practical estimation of Lyapunov exponents us-
ing a spatial average. This method had a number of
shortcomings, however. It only produced an estimate of
the largest exponent and even for this it required that the
map be known. It also lacked theoretical justification for
the computation of the appropriate directions to measure
stretching in and had no results on convergence of the ex-
ponents to the true values. Similar work has been done
by Boyarsky [21] in one dimension for piecewise mono-
tonic expanding maps and unimodel maps with negative
Schwarzian derivative. Such maps admit absolutely con-
tinuous invariant measures. Boyarsky approximates
these maps with piecewise linear maps to obtain estimates
of the absolutely continuous invariant measure and the
single Lyapunov exponent. In one dimension, the prob-
lem of discontinuity of the single exponent does not arise,
and it is true that C!-close maps have nearby exponents,
provided that the approximate map possesses an ergodic
invariant measure close to the original.

We again make the point that as our techniques stand,
they are not as easy to use, nor as quick or memory
efficient as the traditional time average. However, it is
hoped that they will form a basis for a methodology of
exponent calculation in the future, one which has a firmer
mathematical footing than the current accepted practice.
The major stumbling block at the moment is a rigorous
treatment of characterizing and approximating invariant
measures of dynamical systems. The existence of “physi-
cal” measures has only been shown in special cases, and
little is known about the relationship between the invari-
ant measure of the real system and the long cycles pro-
duced by the computer representation of the system on a
finite state computer. We hope to make a small amount
of progress in this area, to show that our perturbed mea-
sure is indeed a good approximation of the “physical”
measure of the system, whatever that may turn out to be.
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